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1 Two Receiver Broadcast Channels

1.1 Degraded two receiver broadcast channels

The two receiver broadcast channel (for a discrete memoryless channel) is defined via

• p(y1, y2 | x), which is nonnegative with
∑

y1,y2
p(y1, y2 | x) = 1 for all x,

• Input alphabet x ∈X ,

• Output alphabet Y1 of receiver 1,

• Output alphabet Y2 of receiver 2,

• Memorylessness of the channel, given by

p(y1,[1:n], y2,[1:n] | x[1:n]) =
n∏
i=1

p(y1,i, y2,i | xi),

where y1,[1:n] is new notation for (y1)
n
1 ,

• Encoding map en : [M
(1)
n ]× [M

(2)
n ]→X n of block length n,

• Decoding map dn : Y n → [M
(1)
n ]× [M

(2)
n ] of block length n,

• Rate region given by the closure of the set

{(R1, R2) : ∃((en, dn), n ≥ 1) s.t. lim inf
n

1
n logM (1)

n ≥ R1,

lim inf
n

1
n logM (2)

n ≥ R2,

lim
n→∞

P (dn(en(W1,n,W2,n)) 6= (W1,n,W2,n)) = 0, }

where W1,n ∼ Unif([M
(1)
n ]),W2,n ∼ Unif([M

(2)
n ]).
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The bad news is that finding the rate region has been an open problem for about 50
years. A special case where the rate region is known is called the stochastically degraded
case.

Definition 1.1. p(y1, y2 | x) is called physically degraded if

p(y1, y2 | x) = p(y1 | x)p(y2 | y1).

It is called stochastically degraded if there exists some distribution p′(y2 | y1) such that

p(y2 | x) =
∑
y1

p(y1 | x)p′(y2 | y1).

The physical degradation condition means that we have the Markov chain X−Y1−Y2.
The stochastic degradation condition does not require X−Y1−Y2 but is “equivalent” since
the rate region only depends on p(y1 | x) and p(y2 | x).

Example 1.1 (Stochastically but not physically degraded channel). Let X = Y1 = Y2 =
{0, 1}, and suppose that Y1 = X ⊕ Z, where Z ∈ {0, 1}, P(Z = 1) = a = 1 − P(Z = 0).
Here, 0 < a < 1. Also, let Y2 = Z, where Z q X. This is not a physically degraded
channel, since X − Y1 − Y2 is false (e.g. knowing both X and Y1 determines Y2). But it is

stochastically degraded because we can replace Y2 by Z ′, where Z ′
d
= Z, Z ′ q (X,Z).

Example 1.2 (Broadcast channel that is not stochastically degraded). Let X = Y1 =
Y2 = {0, 1} with p(y1 | x) given by a Z-channel and p(y2 | x) given by a different Z-channel.

We claim that there cannot be any p′(y2 | y1) such that the stochastic degradation
condition holds, i.e.

p(y2 | x) = sumy1p(y1 | x)p′(y2 | y1).

If such a p′ existed, then

0 = pY2|X(1 | 0)

= pY1|X(1 | 0)p′(1 | 1) + pY1|X(0 | 0)p′(1 | 0).
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That is,
0 = p′(1 | 1) + (1− a)p′(1 | 0),

so
p′(1 | 1) = p′(1 | 0) = 0,

which makes
p′(0 | 1) = p(0 | 0) = 1.

Then p(y2 | x) =
∑

y1
p(y1 | x)p′(y2 | y1) gives the the wrong channel.

1.2 Capacity region for a stochastically degraded broadcast channel

Theorem 1.1. The capacity region for independent private messages over a stochastically
degraded broadcast channel is the closure of the convex hull of

{(R1, R2) : R2 ≤ I(U ;Y2), R1 ≤ I(X;Y1 | U)}

for some p(x)p(x | u)p(y1, y2 | x), where U ∈ U and |U | ≤ max{|X |, |Y1|, |Y2|}.

Think of these U variables as information that receiver 1, the stronger receiver, can use
to get a better signal.

Proof. We will use a random coding achievability argument. The codebook is going to be
comprised of 2n(R1−δ)2n(R2−δ) codewords in X n, organized as 2n(R2−δ) clusters, each with
2n(R1−δ) codewords.

Generate 2n(R2−δ) independent sequences (U1(m2), . . . ,Wm(m2)) with 1 ≤ m22
n(R2−δ),

and entries
iid∼ p(u). For eachm2, generate 2n(R1−δ) sequences (X1(m1,m2), . . . , Xn(m1,m2))

with 1 ≤ m1 ≤ 2n(R1−δ) and, for each m1, joint law
∏n
i=1 p(xi | Ui(m2)) (independently

over m1).
To send (m1,m2) the transmitter sends (X1(m1,m2), . . . , Xn(m1,m2)). Receiver 2, re-

ceiving (Y2,1, . . . , Y2,n), determines all m2 such that (U[1:n](m2), Y2,[1:m]) is ε-jointly weakly
typical. If there is only one such message, it decodes as m2. If there are none or more
than one such message, it decodes arbitrarily. Receiver 1, receiving (Y1,1, . . . , Y1,n), finds
all (m1,m2) such that (U[1:n](m2), X[1:n](m1,m2), Y1,[1:n]) is ε-jointly weakly typical. If
there is only one such message, it decodes as m1. If there are none or more than one such
message, it decodes arbitrarily.

If we take the probability over the random codebook, W1, and W2, symmetry gives us

P(dn(en(W1,n,W2,n)) 6= (W1,n,W2,n))] = P(dn(en(1, 1)) 6= (1, 1)),

so we can condition on the message pair (m1,m2) = (1, 1) being sent.
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The error events for receiver 2 are

E(2)
n = {(U[1:n](1), Y2,[1:n]) /∈ A

(n)
ε,(U,Y2)

}, E
(2)
n,i = {(U[1:n](i), Y2,[1:n]) ∈ A

(n)
ε,(U,Y2)

}

for i 6= 1. By the weak law of large numbers,

P(E(2)
n )

n→∞−−−→ 0

On the other hand,

P(E
(2)
n,i ) ≤ 2−nI(U ;Y2)23nε,

so we want 2n(R2−δ)2−nI(U ;Y2)2n3ε → 0, i.e. R2 < U(U ;Y2)− 3ε+ δ.
The error events for receiver 1 are

E(1)
n = {(U[1:n](1), X[1:n](1, 1), Y1,[1:n]) /∈ A

(n)
ε,(U,X,Y1)

}, E
(1)
n,i = {(U[1:n](i)Y1,[1:n]) ∈ A

(n)
ε,(U,Y2)

}

for i 6= 1. By the weak law of large numbers,

P(E(1)
n )

n→∞−−−→ 0.

On the other hand,

P(E
(1)
n,i ) ≤ 2−nI(U ;Y1)23nε.

There are 2n(R2−δ), and I(U ;Y1) ≥ I(U ;Y2), so the earlier condition on R2 ensures∑
i 6=1 P(E

(1)
n,i )→ 0.

For j 6= 1, we also have the error event

E
(1)
n,1,j = {(U[1:n](1), X[1:n](j, 1), Y1,[1:n]) ∈ A

(n)
ε,(U,X,Y1)

}.

Then

P(E
(1)
n,1,j) =

∑
u[1:n],x[1:n],y1,[1:n]∈A

(n)
ε

2−nH(U,Y1)2nε2−nH(X|U)2nε

The size of A
(n)
ε is ≤ 2nH(U,X,Y1)2nε.

≤ 2−nI(X;Y1|U)2n4ε.

The converse part of the proof is homework.
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1.3 Capacity region for a stochastically degraded Gaussian broadcast
channel

The Gaussian case (with power constrained to P , receiver 1 noise N (0, σ21), and receiver
noise N (0, σ22) with σ22 > σ21) is automatically stochastically degraded.

Theorem 1.2. The rate region is the union of the sets of the form

{(R1, R2) : R2 ≤ C((1− α)P, αP + σ22), R1 ≤ C(αP, σ21)}

over 0 < α < 1, where

C(P, σ2) =
1

2
log

(
1 +

P

σ2

)
.
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